
Supporting Material

An introduction to infinite HMMs for single molecule data analysis

I. Sgouralis and S. Pressé

Contents

S1 Sampler’s implementation S1
S1.1 Download and installation . S1
S1.2 Graphical user interface . S1

S1.2.1 Description . S1
S1.2.2 Supported data formats . S5

S1.3 Source code . S5
S1.3.1 Chain structure . S5
S1.3.2 Chain handling . S6
S1.3.3 Chain analysis . S7
S1.3.4 Chain utilities . S7

S2 Sampler’s pseudocode S7

S3 Emission model S9

S4 Discrete probability distributions S9
S4.1 Categorical probability distributions . S9
S4.2 Dirichlet probability distribution . S10
S4.3 Posterior probability disitribution for the Dirichlet-Categorical model S10

S5 Example data analyses S10
S5.1 Kinetics estimation . S10
S5.2 Data generation . S10

S1 Sampler’s implementation

Here we present a fully functioning implementation of the iHMM sampler outlined in the Methods section of the
main text. This implementation can be used to analyze experimental time series by generating chains of samples
as demonstrated in the Results section of the main text and Section S5 below. Herewith, we refer to these chains
of samples simply as “chains”.

The present implementation can handle only a single observation time series. The supplied time series needs
to be corrected for drift beforehand.

The sampler’s source code is developed within the commercial software MATLAB R© which needs to be installed
before the sampler can be used. For an introduction to MATLAB, we refer to the user’s manual published by
MathWorks, Inc.

To facilitate the uninitiated user, we provide also a graphical user interface (GUI). The reader who is interested
in source code details might skip the sections below and move directly to Sect. S1.3.

S1.1 Download and installation

The code can be downloaded in a single zip file, sampler.zip. Once downloaded, sampler.zip needs to be
unzipped and the contents placed in the same folder. If properly extracted, this folder should include the following:
(i) sampler SRC, a subfolder with the sampler’s source files; (ii) sampler GUI.fig and sampler GUI.m, the
sampler’s GUI files; (iii) demo data.txt, a text file with an example time series; and (iv) demo sampler.m, a
script demonstrating the use of the sampler’s source.

For the activation and use of the GUI see Sect. S1.2. For direct use of the source code see Sect. S1.3.

S1.2 Graphical user interface

To activate the GUI: (i) start MATLAB, (ii) set the current folder to the folder that the sampler’s files are stored,
and (iii) enter sampler GUI in the command window or double click on sampler GUI.fig in the current folder
window.

Screenshots of the GUI are shown on Fig. S1. Through the GUI you can load data (Import), configure the
iHMM to be used (Parameters), generate and expand chains (Sample), perform a preliminary analysis (Analyze),
and save the chains for further analysis (Export).

S1.2.1 Description

Below we provide a description of the various choices in the GUI. For reference see Fig. S2.

(A) Import button Use this button to import the time series to be analyzed. For the supported formats see
Sect. S1.2.2 below.

(B) Imported time series Panel B1 shows the imported time series. Panel B2 shows the distribution of the
imported time series.

(C) Clear button Use this button to clear the imported time series and any generated chain.

(D) Parameter values Use these fields to enter values for the iHMM parameters. These are: D1, concentration
for the transition probabilities α; D2, concentration for the base γ; D3, hyperparameters for the emission gaussian
means and precisions λ, ρ, β, ω (for details on the emission model see Sect. S3); D4, initial number of states in
the chain K(1). All values must be strictly positive. The parameter λ can take any real value, while ρ, β, ω can
take only positive real values. The parameter K(1) can take positive integer values.

Remark: larger/lower values of α tend to generate chains with sparser/denser transition probability vectors,
larger/lower values of γ tend to generate chains with more/fewer states. The value of K(1) does not affect the

S1

generated chains provided a sufficient number of samples are generated; nevertheless, K(1) might increase or
reduce the burn-in period.

(E) Create button Use this button to create a new chain with the parameter values specified in the fields D.
Newly created chains contain only one sample and need to be expanded (see I below) before they can be analyzed
(see K below) or exported (see L below).

(F) Batch size Use this field to enter the number of new samples to be generated. If the chain has been just
created, this is the number of initial samples to be generated, otherwise the sampler will expand the existing chain
by the specified number of samples. This number can be a non-negative integer.

Remark: Generally, the larger the number of requested samples, the longer the computations last.

(G) Burn-in fraction Use this field to set the fraction of total samples considered as burn-in. For example a
fraction of 0.20 will discard the first 20% of the samples in the generated chain from subsequent analysis. This
fraction needs to be between 0 and 1.

Remark: Burn-in samples are highlighted in J1 and J3 (see below).

(H) Progress report Activate these options to monitor the sampler’s progress. Following the completion of
each iteration, the status bar option prints messages in the command line, while the visual option uses separate
figures to illustrate the last generated sample.

Remark: Activating the option for visual output slows down the computations and should be avoided for the
generation of long chains.

(I) Sample button Use this button to start the sampler. The sampler will generate and augment the existing
chain by the batch size specified in F.

(J) Sampled chain Shows selected sample sequences from the current chain. Specifically, these are: Panel J1,
number of visited states K(r); Panel J2, distribution of K(r); Panel, J4 emission means µ(r); Panel J4, distribution
of µ(r).

Remark: Burn-in samples (determined according to the value in G) are highlighted in J1 and J3, but are
excluded from J2 and J4.

(K) Analyze button Use this button to perform a preliminary analysis of the generated chain. The analysis
includes: (i) estimation of the emission means time series, (ii) estimation of the transition probabilities, (iii)
estimation of the dwell times. These analyses utilize a discretization of the parameter space which should be
provided by the user. The generated figures can be exported using the standard figure options. The results can
also be saved upon request. In any case, for a thorough analysis, the chain should be exported (see L below) and
analyzed externally.

Remark: Burn-in samples (determined according to the value in G) are excluded from the analyses.

(L) Export button Use this button to export the current chain for further analysis independently of the sampler’s
GUI. For the supported formats see Sect. S1.2.2 below.

Remark: Burn-in samples (determined according to the value in G) are not included in the exported chains.

(M) Reset button Use this button to delete the current chain and enable the generation of a new one. Reseting
does not affect the imported time series in (A)–(B).

S2

Figure S1: Graphical user interface. Upper left, without imported data; Upper right, with imported data without
generated chain; Lower, with imported data and generated chain. For details see Sect. S1.2

S3

Figure S2: Graphical user interface. For details see Sect. S1.2.1

S4

S1.2.2 Supported data formats

The GUI can import experimental time series, denoted x̄ in the main text, to be used by the sampler in the
generation of the chains, and also export chains to be analyzed by external software packages. Below we describe
the data formats that are supported for import/export.

Import The GUI requires time series x̄ to be imported in either of the following formats:

• Text files: a single text file (*.txt) consisting of one column with one observation per line.

• Mat files: a single mat file (*.mat) containing a vector with one observation per component.

Export The sampler can export the generated samples in the following format:

• Mat files: a single mat file (*.mat) that contains the following individual chain fields: params, s, K, B, O,
P, F. These fields are explained in Sect. S1.3.1 below.

S1.3 Source code

The sampler is implemented in the files of the subfolder sampler SRC. These include various MATLAB functions
that: (i) sample random variables with specified distributions, (ii) carry out the steps of the algorithm briefly
described in the methods section of the main text or in detail in Sect. S2 below, (iii) initialize each chain and
their parameters, and (iv) provide further handing (i.e. such as export, visualization, and preliminary analysis) of
each chain.

The source code can be used directly to analyze a time series without invoking the GUI. For an illustration
we refer to demo sampler.m. Here we describe the basic functionally. For a description of the implemented
algorithm see Sect. S2 below.

S1.3.1 Chain structure

The code analyzes a time series which is stored in x. Throughout the code x is a vector of length N. Each
generated chain, stored in chain, is a structure that contains the following fields:

• chain.params a structure keeping the chain’s parameters. Namely, these are:

– params.a the transitions concentration α.
– params.g the base concentration γ.
– params.Q the hyperparameters of the emission distributions λ, ρ, β, ω (for details see Sect. S3) stored

in params.Q(1:4), respectively.
– params.Brep and params.Frep implementation parameters with no direct interpretation.

• chain.r max is the total number of samples kept in chain. Generally, chain.r max takes values larger or
equal to 1.

• chain.dr sk is the stride of the chain. That is, chain stores samples every chain.dr sk iterations.
Generally, chain.dr sk takes values greater of equal to 1.

• chain.i is the total number of iterations run since the initialization of chain. Generally, chain.i takes
values greater of equal to 1 and lower than chain.r max.

• chain.s is an array of size [chain.r max,N]. Each row chain.s(r,:) stores the state’s label sequence
of the r sample. Specifically, chain.s(r,n) is the label of the state the system attains at the n time step.
Generally, the labels in chain.s(r,:) attain all values in 1:chain.K(r).

S5

• chain.K is a vector of size chain.r max. Specifically, chain.K(r) is the total number of distinct states
visited in the r sample. Generally, chain.K(r) takes integer values above or equal to 1.

• chain.B is a cell of size [chain.r max,1]. Each component chain.B{r} is a vector of size chain.K(r)+1
that stores the base of the r sample. Specifically, chain.B{r}(k) is the component of the base measure
corresponding to the states in chain.s(r,:) with label k, and chain.B{r}(end) is the remainder such
that chain.B{r}(:) sums to 1.

• chain.O is a cell of size [chain.r max,1]. Each component chain.O{r} is a vector of size chain.K(r)+1
that stores the initial state probabilities of the r sample. Specifically, chain.O{r}(k) is the compo-
nent of the initial probability measure corresponding to the states in chain.s(r,:) with label k, and
chain.O{r}(end) is the remainder such that chain.O{r}(:) sums to 1.

• chain.P is a cell of size [chain.r max,1]. Each component chain.P{r} is an array of size [chain.K(r),
chain.K(r)+1] that stores the transition probability vectors of the r sample. Specifically, chain.P{r}(k,j)
stores the transition probability corresponding to departing from the state in chain.s(r,:) with label k
and arriving to the state in chain.s(r,:) with label j, and chain.P{r}(k,end) are the remainders such
that chain.P{r}(k,:) sum to 1 for each k.

• chain.F is a cell of size [chain.r max,1]. Each component, chain.F{r} is an array of size [chain.K(r),
3] that stores the parameters of the emission distributions of the r sample. Specifically, [chain.F{r}(k,1),
chain.F{r}(k,2)] stores the mean µ and precision τ , respectively, of the emission distribution (see
Sect. S3) corresponding to the state in chain.s(r,:) with label k, while chain.Fr(k,3) stores the
relative fraction of visits to the states in chain.s(r,:) with label k.

S1.3.2 Chain handling

The driver function is chainer main.m which creates and expands a single chain. The driver can be called
two-fold

• chain = chainer main(x,r max,[],opts,flag sta,flag vis) creates a chain with parameters spec-
ified in opts and runs r max iterations of the sampler generating r max samples. If r max is 1, the driver
simply initializes a chain without generating any samples.

• chain = chainer main(x,r max,chain init,[],flag sta,flag vis) expands an existing chain, name-
ly chain init, by generating and adding r max new samples.

In both calls, x is the experimental time series and flag sta and flag vis are logical flags indicating whether
the sampler should display output monitoring each iteration. In particular, activating flag sta prints in the
command line (output messages are produced by chainer main.m), while activating flag vis uses separate
figure windows (visualization of the sampler’s progress is handled by chainer visualize.m). We note that
activating flag vis can significantly slow down the sampler, so it should be avoided in the generation of long
chains.

In chainer main.m, parameters for new chains are initialized by chainer init params.m and utilize the
options passed in opts. Specifically, these options provide: (i) opts.a, transitions concentration α; (ii) opts.g,
base concentration γ; and (iii) opts.Q(1:4) emission hyperparameters λ, ρ, β, ω, respectively (see Sect. S3).
Starting samples for each chain are initialized by sampler init sample.m and utilize opts.K init, the initial
number of states K(1).

New samples in chainer main.m are produced by iterative calls to sampler update.m. This function uses
an old set of samples: chain.s(r,:), chain.K(r), chain.B{r}, chain.O{r}, chain.P{r}, chain.F{r}
and produces a new one chain.s(r+1,:), chain.K(r+1), chain.B{r+1}, chain.O{r+1}, chain.P{r+1},
chain.F{r+1}. In doing do, sampler update.m uses the functions in sampler SRC that perform the various
steps of the beam sampler outlined in Sect. 2.2 of the main text and described in more detail in Sect. S2 below.

S6

S1.3.3 Chain analysis

The source code is equipped with functions that perform simple analyses

• [m mod,m red] = chainer analyze means(chain,fr,dr,m min,m max,m num,x) This function uses the
samples in chain to compute the time series of the best emission mean estimate, i.e. the most likely se-
quence µ1 → µ2 → · · · → µN where µn denotes the mean value of the emission distribution producing
the observation xn at the nth time step. On output m mod is a vector of the same dimensions as the
experimental time series x with contains the corresponding emission mean and m red is a vector containing
only the distinct values in m mod.

• [m edges,p mean,d dist] = chainer analyze transitions(chain,fr,dr,m min,m max,m num,fl)
This function uses the samples in chain to compute estimates of the transition probabilities and expected
dwell times. These estimates are computes on the basis of a discretization of the parameter space that
is returned in m edges. On output, m edges is a vector containing distinct µ values, p mean is a square
matrix containing the mean transition probabilities, and d dist is a two column matrix with the first
column containing the mean and the second column containing the standard deviation of the expected
dwell times. Specifically, p mean(k,j) is the transition probability of departing from the interval between
m edges(k) and m edges(k+1) and arriving to the interval between m edges(j) and m edges(j+1), while
d dist(k,1:2) is the mean and standard deviation of the expected dwell time in the interval between
m edges(k) and m edges(k+1). Generally, the transition probabilities result in a sub-stochastic p mean
estimate, i.e. row sums may be below 1, since samples in chain do not keep track of the unvisited states
in each sample.

Both functions determine burn-in in chain according to the fraction fr. For example, a value for fr of 0.20
discards the first 20% of the samples in chain as burn-in. From the remaining samples, both functions use only
every dr sample. That is, a value for dr of 2 indicates that for the analyses is used only 1 every 3 samples
excluding those in the burn-in period.

Both functions utilize histograms of the corresponding posterior probability distributions. For the creation of
these histograms, the parameter space is described between m min and m max using a total of m num equidistant
bins. The limits m min and m max are automatically adjusted to include every occurring value in the chain.

S1.3.4 Chain utilities

The source code is equipped with the following functions that perform auxiliary tasks:

• chainer export(chain,fr,dr,file name,frmt) This function exports the samples in chain for further
analysis with external software. For the supported export formats see Sect. S1.2.2 above. This function
produces no output.

• G=chainer visualize(G,r,chain,x) This function is used to provide a visual comparison of the r sample
in chain with the experimental time series in x. On input, G is a graphic handle that may be empty (in
which case a new handle will be initialized). On output, G is the updated graphic handle.

S2 Sampler’s pseudocode

Below we provide explicit details for the implementation of the sampler’s steps. These steps are based on the
beam sampler [1] and are briefly described in the Methods section of the main text and implemented in the source
code of Sect. S1.3 above. For completeness, we also include an initialization step which is not mentioned in
Sect. 2.2 of the main text.

For definitions and notation we refer to the Methods section of the main text. To facilitate bookkeeping, we
assume that all states σk represented in the statespace S are labeled with k = 1, . . . ,K, while unrepresented
states are labeled with k > K.

S7

Step 0 Before the sampler takes over, we need to provide values for the first samples s̄(1), ˜̃π(1), β̃(1) and φ̃(1).
These values can be chosen at random, provided they have consistent dimensions.

Then, for r = 1, 2, . . . we need to iterate the steps that follow.

Step 1 Initially, we need to sample a new sequence ū(r) of auxiliary (slicers) variables

un
∣∣s̄(r−1), ˜̃π(r−1) ∼ π(r−1)

s
(r−1)
n−1 →s

(r−1)
n

U(0, 1) (S1)

where U(0, 1) denotes the uniform probability distribution over [0, 1].

Step 2 Once ū(r) is sampled, we need to ensure that all states that the system is allowed to visit are represented
in S. The probability of the system departing from a state σk in S and arriving to a state already present in S
equals

∑K
j=1 πσk→σj , thus the probability of the system jumping to a state not present in S is 1−

∑K
j=1 πσk→σj .

Therefore, to test wether we represent all necessary states or not, we have to check against the condition

max
k=1,...,K

1−
K∑
j=1

π(r−1)
σk→σj

 < max
n=1,...,N

u(r)
n (S2)

If the condition fails, we generate a new state σK+1, add it in S, adjust K, and repeat until the condition is
satisfied. Specific details on how to expand β̃(r−1), ˜̃π(r−1), and φ̃(r−1), when generating new states, can be found
in Ref. [2, 1].

Step 3 At this point, all σk that the system may visit are present in S, so we can sample a new state sequence
s̄(r) by a minor modification of the forward-backward algorithm initially developed for the finite HMM [3, 4]. For
details see Ref. [1].

Step 4 Following the sampling of s̄(r), some of the states currently present in S might not have been visited.
So, in this step, we remove from S any states not visited, since they are not needed in future iterations. In other
words, we discard from ˜̃π(r−1), φ̃(r−1), β̃(r−1) those components corresponding to the states that are not present
in s̄(r). Additionally, to help bookkeeping in future iterations, we relabel the states that remain such that they
occupy the slots k = 1, 2, . . . ,K, where K is the number of distinct states in s̄(r). To do so, we reorder the
components of ˜̃π(r−1), φ̃(r−1), β̃(r−1) and modify s̄(r) accordingly.

Step 5 We must now sample β̃(r) using the stick-breaking construction. This can be easily achieved by intro-
ducing a new set of auxiliary variables the computation of which is based on s̄(r), β̃(r−1) and γ. For details see
Ref. [2, 5].

Step 6 Next, we need to sample new transition probabilities ˜̃π(r) based on the current stick β̃(r) and state
sequence s̄(r). For this, we let c(r)

σk→σj denote the number of transitions from state σk to state σj that occur in
s̄(r). It follows from the properties of the Dirichlet process that for each σk we may generate π̃(r)

σk by sampling
from a Dirichlet distribution that depends on c(r)

σk→σj , β̃(r) and α. See for example Ref. [2].

Step 7 Finally, having sampled all other variables, we now need to sample new emission parameters φ̃(r) for the
states currently present in S. Generating these samples depends on the particular choices of emission distributions
F (x;φ) and the prior of the emission parameters H(φ). Those choices are dictated by the physics of the system
at hand and may differ with different experimental conditions, e.g. FRET, force spectroscopy, etc. Generally,
sampling φ̃(r) can be done efficiently if F (x;φ) and H(φ) are conjugate or semi-conjugate such as in the model
described in Sect. S3 (see below), although non-conjugate cases can also be handled [6].

S8

S3 Emission model

In this work the emissions are modeled by gaussian distributions, for example as in Eq. (1) of the main text.
For convenience the gaussians are parametrized by mean value µ and precision τ (i.e. τ = 1/σ2, where σ is the
gaussian standard deviation). With this parametrization the gaussians densities are

F (x;φ) =
√

τ

2π exp
(
−τ2 (x− µ)2

)
(S3)

To estimate φ = (µ, τ) we adopt the conditionally conjugate model developed in [7]

µ
∣∣λ, ρ ∼ N (λ, 1/ρ) (S4)

τ
∣∣β, ω ∼ G(β, 1/ω) (S5)

where N and G denote the normal and gamma probability distributions which have the densities

FN (µ;λ, ρ) =
√

ρ

2π exp
(
−ρ2(µ− λ)2

)
(S6)

FG(τ ;β, ω) = τ
β
2−1

(2
ωβ)β/2Γ(β/2)

exp
(
−τωβ2

)
(S7)

In the present implementation, the hyperparameters λ (mean of µ), ρ (precision of µ), β (shape of τ) and ω (rate
of τ) need to be specified by the user. This can be achieved by either the corresponding fields in the GUI (see
Sect. S1.2), or by the values in opts.Q(1:4) in the source code (see Sect. S1.3).

S4 Discrete probability distributions

Here we provide the definitions of the discrete probablity disitributions used in this study. For the sake of continiuty,
in this section we follow the same notation as in the main text.

S4.1 Categorical probability distributions

Let s be a Categorical random variable

s
∣∣π̃ ∼ CatS(π̃) (S8)

where the categorical weights are π̃ = (πσ1 , πσ2 , . . . , πσL) and the state space is S = {σ1, σ2, . . . , σL}, i.e. the
values s may attain. It is understood that the individual weights πσk are non-negative and sum to 1. The
probablity distribution of s is givem by

P(s = σk
∣∣π̃) = πσk (S9)

which may also be equivallently denoted as

P(s
∣∣π̃) =

L∏
k=1

(πσk)δσk (s) (S10)

where δσk(·) denotes the Dirac delta function supported on σk, i.e. δσk(s) = 1 if σk = s or δσk(s) = 0 if s 6= σk.

S9

S4.2 Dirichlet probability distribution

Let π̃ be a (symmetric) Dirichlet random variable

π̃ ∼ DirS
(α
L
,
α

L
, . . . ,

α

L

)
(S11)

where it is understood that the concentration α is positive. The probability density of π̃ is given by

P(π̃) = Γ(α)
ΓL(α/L)

L∏
k=1

(πσk)αL−1 (S12)

where Γ(·) denotes the Gamma function.

S4.3 Posterior probability disitribution for the Dirichlet-Categorical model

Let s and π̃ follow a Categorical-Dirichlet model

s
∣∣π̃ ∼ CatS(π̃) (S13)

π̃ ∼ DirS
(α
L
,
α

L
, . . . ,

α

L

)
(S14)

Then the posterior probability density of the categorical weights is given by

P(π̃
∣∣s) ∝ P(s

∣∣π̃)P(π̃) =
L∏
k=1

(πσk)αL−1+δσk (s) (S15)

S5 Example data analyses

In this section we show additional analyses of the two datasets mentioned in the Results section of the main text.
For the generation of these datasets see Section S5.2 (below). Both sets are analyzed assuming concentrations
α = 1, γ = 1 and the following values for the hyperparameters: λ = 0.5, ρ = 11.11, β = 1, and ω = 0.0025, for
the definitions of these see Sect. S3 (above).

S5.1 Kinetics estimation

Figures S3 and S4 show the estimated transition matrices for these datasets. As can be seen, iHMM provides
accurate estimates for the transition probabilities within the portions of the state space that are visited in the
corresponding traces. For example, the lower two states σ1 and σ2 in dataset 2 are accurately estimated using
either the reduced trace or the full trace. In contrast, the upper three states σ3, σ4, and σ5 are estimated only
from the full dataset. Notice that, because of the fewer visits to σ5, the accuracy of the corresponding estimates
is severely reduced.

S5.2 Data generation

For the generation of the data used in the examples of the Results section of the main text, we simulated Markov
models that switch between 5 different states that are denoted σ1, . . . , σ5. The kinetics of these models are shown
in Fig. S5. Initial states, denoted σ0, are chosen from the corresponding stationary distributions.

Each simulated σk emits gaussian observations. For simplicity, we assume that the gaussian means are
equidistant and that the gaussian standard deviations are identical and equal to 30% of the inter-mean distance.

S10

0 0.5 1
Arriving

0

0.2

0.4

0.6

0.8

1
D

ep
ar

tin
g

Estimated transition matrix

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

0 0.5 1
Arriving

0

0.2

0.4

0.6

0.8

1

D
ep

ar
tin

g

Estimation error

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

Figure S3: Kinetics estimation. Estimated transition matrix (left) and corresponding errors (right) from dataset 1
of the main text. For details see Sect. S5.

References

[1] J Van Gael, Y Saatci, YW Teh, and Z Ghahramani. Beam sampling for the infinite hidden Markov model. In
Proceedings of the 25th International Conference on Machine Learning, pages 1088–1095. ACM, 2008.

[2] YW Teh, MI Jordan, MJ Beal, and DM Blei. Hierarchical Dirichlet processes. Journal of the American
Statistical Association, 2012.

[3] L Rabiner and B Juang. An introduction to hidden Markov models. IEEE ASSP Magazine, 3(1):4–16, 1986.

[4] SL Scott. Bayesian methods for hidden Markov models. Journal of the American Statistical Association, 2011.

[5] EB Fox, EB Sudderth, MI Jordan, and AS Willsky. A sticky HDP-HMM with application to speaker diarization.
The Annals of Applied Statistics, pages 1020–1056, 2011.

[6] RM Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational
and Graphical Statistics, 9(2):249–265, 2000.

[7] D Görür and CE Rasmussen. Dirichlet process gaussian mixture models: Choice of the base distribution.
Journal of Computer Science and Technology, 25(4):653–664, 2010.

S11

0 0.5 1
Arriving

0

0.2

0.4

0.6

0.8

1

D
ep

ar
tin

g

Estimated transition matrix

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

0 0.5 1
Arriving

0

0.2

0.4

0.6

0.8

1

D
ep

ar
tin

g

Estimation error

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

0 0.5 1
Arriving

0

0.2

0.4

0.6

0.8

1

D
ep

ar
tin

g

Estimated transition matrix

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

0 0.5 1
Arriving

0

0.2

0.4

0.6

0.8

1

D
ep

ar
tin

g

Estimation error

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

Figure S4: Kinetics estimation. Estimated transition matrix (left) and corresponding errors (right) from dataset 2
of the main text. Upper panels correspond to the first part the dataset; while lower panels correspond to the full
dataset. For details see Sect. S5.

S12

σ1 σ2 σ3 σ4 σ5
1

1

1

1

1

1

1

1

3 3 3 3 3

σ1 σ2 σ3 σ4 σ5
1

1

1

1

1

1

1

1

81 127 9 3

Figure S5: Markov models used to generate the synthetic data in the Results section of the main text.
Upper model generated dataset 1, and lower model generated dataset 2. For details see main text and Sect. S5.

S13

	Sampler's implementation
	Download and installation
	Graphical user interface
	Description
	Supported data formats

	Source code
	Chain structure
	Chain handling
	Chain analysis
	Chain utilities

	Sampler's pseudocode
	Emission model
	Discrete probability distributions
	Categorical probability distributions
	Dirichlet probability distribution
	Posterior probability disitribution for the Dirichlet-Categorical model

	Example data analyses
	Kinetics estimation
	Data generation

